If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5u^2+25u-70=0
a = 5; b = 25; c = -70;
Δ = b2-4ac
Δ = 252-4·5·(-70)
Δ = 2025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2025}=45$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(25)-45}{2*5}=\frac{-70}{10} =-7 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(25)+45}{2*5}=\frac{20}{10} =2 $
| Y=150+20n | | 6+30x=20x+20 | | -6x2+36x+714=0 | | 6+2n=n+8 | | 2(2x+6)=44 | | 5-8x=14+x | | -7(8x-11)-4=6(x-8)+59 | | -45=-27-3w | | 1x+6=11x+56 | | 4(d+5)=64 | | 5m-31=49 | | -5v+7/3=-1/4v-3/4 | | x-15+x+10=180 | | 21-4x=3(2x-1) | | t-88=-12 | | 16(r-5)=-32 | | 13w+45=4w | | -2(d-5)=30 | | 4x^2-8x-2=-2 | | 128-3x=180 | | 7x-65=124 | | 3y=40-24 | | 8(6+u)-2u=-10 | | 5x+61=196 | | -18=3v-9 | | 3(t-13)=3 | | 4x+8=-3x+13 | | 4(z-14.6)=16.4 | | Y=-6x3-9x-27= | | -49=-7(w-80) | | Y-13x=25 | | -8(y+64)=0 |